402 research outputs found

    Prefatory Note

    Get PDF
    The three essays in this issue of Draftings In . . . are a sample of the papers written for the first Presidential Scholars Seminar at the University of Northern Iowa. President Constantine W. Curris began the steps towards establishing the Presidential Scholars program soon after he took office at UNI in 1983. Robert D. Talbott, Professor of History and Director of the Scholars Board, administers the program. The first group of fifteen scholars began their studies during the fall semester of 1986. I was chosen to teach their first scholars-only seminar on the topic of The Ancient Epics

    Construction and test of a new CBM-TRD prototype in Frankfurt

    Get PDF

    The Cell and the Sum of Its Parts: Patterns of Complexity in Biosignatures as Revealed by Deep UV Raman Spectroscopy

    Get PDF
    The next NASA-led Mars mission (Mars 2020) will carry a suite of instrumentation dedicated to investigating Martian history and the in situ detection of potential biosignatures. SHERLOC, a deep UV Raman/Fluorescence spectrometer has the ability to detect and map the distribution of many organic compounds, including the aromatic molecules that are fundamental building blocks of life on Earth, at concentrations down to 1 ppm. The mere presence of organic compounds is not a biosignature: there is widespread distribution of reduced organic molecules in the Solar System. Life utilizes a select few of these molecules creating conspicuous enrichments of specific molecules that deviate from the distribution expected from purely abiotic processes. The detection of far from equilibrium concentrations of a specific subset of organic molecules, such as those uniquely enriched by biological processes, would comprise a universal biosignature independent of specific terrestrial biochemistry. The detectability and suitability of a small subset of organic molecules to adequately describe a living system is explored using the bacterium Escherichia coli as a model organism. The DUV Raman spectra of E. coli cells are dominated by the vibrational modes of the nucleobases adenine, guanine, cytosine, and thymine, and the aromatic amino acids tyrosine, tryptophan, and phenylalanine. We demonstrate that not only does the deep ultraviolet (DUV) Raman spectrum of E. coli reflect a distinct concentration of specific organic molecules, but that a sufficient molecular complexity is required to deconvolute the cellular spectrum. Furthermore, a linear combination of the DUV resonant compounds is insufficient to fully describe the cellular spectrum. The residual in the cellular spectrum indicates that DUV Raman spectroscopy enables differentiating between the presence of biomolecules and the complex uniquely biological organization and arrangements of these molecules in living systems. This study demonstrates the ability of DUV Raman spectroscopy to interrogate a complex biological system represented in a living cell, and differentiate between organic detection and a series of Raman features that derive from the molecular complexity inherent to life constituting a biosignature

    Patterns of in situ Mineral Colonization by Microorganisms in a ~60°C Deep Continental Subsurface Aquifer

    Get PDF
    The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells

    Prevention of ulcer disease in goldfish by means of vaccination

    Get PDF
    A vaccine comprising cells of Aeromonas bestiarum grown in tryptic soy broth and atypical A. salmonicida cells produced in iron-limited and iron-supplemented media protected goldfish Carassius auratus when administered by immersion (dosage ≈ 5 × 107 cells/mL for 60 s) followed after 28 d by an oral booster (dosage = 5 × 107 cells/g of feed), which was fed for 7 d so that each fish received about 1 g of vaccine-containing feed. After challenge by intramuscular injection of a virulent culture of atypical A. salmonicida, the relative percent survival (RPS) was more than 90%. The approach was more successful than using a commercial furunculosis vaccine with or without supplementation with A. bestiarum or atypical A. salmonicida cells. Moreover, a smooth derivative of the virulent rough culture of atypical A. salmonicida was less effective as a vaccine candidate, yielding an RPS of only 65%. Low antibody titers of 1:39–1:396 were found in the vaccinated fish. The vaccinated fish had a significantly higher proportion of dead head kidney macrophages (10.9 ± 3.5%; P = 0.0149) than did the controls (6.8 ± 3.1%). However, differences in the number of erythrocytes and leukocytes, the level of phagocytic and lysozyme activities, and the proportion of lymphocytes, monocytes, and polymorphonuclear cells were not statistically significant between the two groups
    • …
    corecore